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Abstract: Because of the measurement errors, the result ỹ = f(x̃1, . . . , x̃n) of processing the
measurement results x̃1, . . . , x̃n is, in general, different from the value y = f(x1, . . . , xn) that we
would obtain if we knew the exact values x1, . . . , xn of all the inputs. In the linearized case, we can
use numerical differentiation to estimate the resulting difference ∆y = ỹ− y; however, this requires
> n calls to an algorithm computing f , and for complex algorithms and large n this can take too
long. In situations when for each input xi, we know the probability distribution of the measurement
error, we can use a faster technique for estimating ∆y – namely, Monte-Carlo simulation technique.
A similar Monte-Carlo technique is also possible for the case of interval uncertainty, but the resulting
simulation is not realistic: this technique uses Cauchy distributions which can result in arbitrarily
small or arbitrarily large values, while we know that each measurement error ∆xi = x̃i − xi is
located within the corresponding interval. In this paper, we prove that this non-realistic character
of interval Monte-Carlo simulations is inevitable: namely, that no realistic Monte-Carlo simulation
can provide a correct bound for ∆y.
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1. Need to Gauge Uncertainty of the Result of Data Processing: A Brief Reminder

Need for data processing. One of the main objectives of science is to predict the future state
of the world, i.e., to predict the future values of the quantities that describe this future state. To
make these predictions, we need to know how each of these future values y depends on the current
values x1, . . . , xn of the related quantities, i.e., we need to know an algorithm y = f(x1, . . . , xn)
that relates y to xi.

Once we find this information, we can then use the results x̃1, . . . , x̃n of measuring the quantities
xi to compute an estimate ỹ = f(x̃1, . . . , x̃n) for the desired future value y.

For example, to predict tomorrow’s temperature in El Paso y, we need to know today’s tem-
perature, wind speed and direction, and humidity in different locations inside El Paso and near El
Paso; these values x1, . . . , xn are what we can use for this prediction. We can then use an appro-
priate method for solving the corresponding partial differential equation as the desired prediction
algorithm y = f(x1, . . . , xn).

The weather example shows that the corresponding prediction algorithms can be very compli-
cated; thus, we need to use high-performance computers for this data processing.
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Other situations when we need data processing come from the fact that we also want to know
the current state of the world, i.e., we want to know the current values of all the quantities that
describe this state. Some of these quantities – like temperature in El Paso – we can measure directly.
Other quantities, such as the temperature or the density deep inside the Earth, are difficult or even
impossible to measure directly. To find the values of each such difficult-to-measure quantity y,
a natural idea is to find related easier-to-measure quantities x1, . . . , xn that are related to the
desired quantity y by a known dependence y = f(x1, . . . , xn), and then use the results x̃1, . . . , x̃n
of measuring xi to compute an estimate ỹ = f(x̃1, . . . , x̃n) for y.

Need to take uncertainty into account when processing data. In general, data processing
means applying some algorithm f(x1, . . . , xn) to the values of the quantities x1, . . . , xn, resulting
in a value y = f(x1, . . . , xn).

Values xi usually come from measurements. Measurement are never absolutely accurate; the mea-
surement result x̃i is, in general, different from the actual (unknown) value xi of the corresponding

quantity: ∆xi
def
= x̃i − xi 6= 0; see, e.g., (Rabinovich, 2005).

Because of the this, the computed value ỹ = f(x̃1, . . . , x̃n) is, in general, different from the ideal
value y = f(x1, . . . , xn).

It is therefore desirable to estimate the accuracy ∆y
def
= ỹ− y. To estimate ∆y, we need to have

some information about the measurement errors ∆xi.

What do we know about the measurement errors ∆xi: two main situations. Traditional
engineering approach to estimating the uncertainty of the results of data processing assumes that
we know the probability distribution of each measurement error ∆xi, and that the corresponding
random variables are independent; see, e.g., (Rabinovich, 2005).

In many practical situations, it is assumed that each ∆xi is normally distributed with zero mean
and known standard deviation σi, but other distributions are also possible. In such situations, our
goal is to find the probability distribution for ∆y.

In many other practical situations, however, we only know the upper bound ∆i on the absolute
value |∆xi| of the measurement error: |∆xi| ≤ ∆i. In such situations, the only information that
we have about the (unknown) actual value xi is that thus value belongs to the interval xi =
[x̃i −∆i, x̃i + ∆i].

Different values xi from these intervals can lead, in general, to different values of y =
f(x1, . . . , xn). Our goal is then to find the range y of all possible values of y:

y = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

The problem of computing this range y is one of the main problems of interval computations; see,
e.g., (Jaulin et al., 2001; Moore, Kearfott, and Cloud, 2009; Rabinovich, 2005).

Possibility of linearization. In many practical situations, the measurement errors are relatively
small. These are the cases that we will consider in this paper.

In such cases, we can safely ignore terms which are quadratic or higher order in ∆xi, and conclude
that (Rabinovich, 2005)

∆y =

n∑
i=1

ci ·∆xi, (1)
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where

ci
def
=

∂f

∂xi
. (2)

What we do in this paper: main idea. In this paper, we recall the known methods of estimat-
ing the interval y under the linearization assumptions. Specifically, there are two classes of such
methods:

− methods that use analytical or numerical differentiation, and

− methods that use Monte-Carlo simulations.

The problem with the existing Monte-Carlo methods is that they are not realistic: namely,

− while we know that each variable xi can only take values inside the corresponding interval xi,

− the simulated values xi can take values outside the interval xi.

In this paper, we prove that this non-realistic character of interval Monte-Carlo simulations is
inevitable: namely, that no realistic Monte-Carlo simulation can produce the correct result y.

Structure of the paper. We start, in Section 2, with recalling the existing methods for computing
the interval y. The explanation of why Cauchy distribution is used in this simulation – and not
any other distribution – is given in a special Appendix.

In Section 3, we explain the problem with the existing Monte-Carlo method: that the corre-
sponding simulations are not realistic. To emphasize why this is a problem, we recall Monte-Carlo
techniques for the case of probabilistic uncertainty – which are realistic.

Finally, in Sections 4 and 5, we prove our main result: that in the case of interval uncertainty,
the use of non-realistic Monte-Carlo techniques is inevitable. Specifically:

− in Section 4, we prove this result under the additional assumption that the simulated values
∆xi are independent, and then,

− in Section 5, we extend this result to the most general case, when we allow dependence between
the simulated random variables.

2. Existing Methods for Computing the Interval Range: Linearization Case

Towards an explicit formula for the desired interval y. The expression (1) for ∆y attains
its largest value when each of the terms ci ·∆xi attains its largest possible value.

Each of these terms is a linear function of ∆xi on the interval [−∆i,∆i]. When ci ≥ 0, this
linear function is increasing and thus, it attains its largest possible value when ∆xi is the largest,
i.e., when ∆xi = ∆i. The corresponding value of the term ci ·∆xi is ci ·∆i.
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When ci < 0, the linear function ci · ∆xi is decreasing and thus, it attains its largest possible
value when ∆xi is the smallest, i.e., when ∆xi = −∆i. The corresponding value of the term ci ·∆xi
is ci · (−∆i) = (−ci) ·∆i.

In both cases, the largest possible value of each term ci ·∆xi is equal to |ci| ·∆i. Thus, the largest
possible value ∆ of the sum (1) is equal to

∆ =
n∑
i=1

|ci| ·∆i. (3)

Similarly, one can show that the smallest possible value of the sum (1) is equal to −∆. Thus,
the range of possible values of ∆y is the interval [−∆,∆], and the range y of possible values of
y = ỹ −∆y is equal to

y = [ỹ −∆, ỹ + ∆]. (4)

Thus, once we have the result ỹ = f(x̃1, . . . , x̃n) of data processing, to compute the desired range
y, it is sufficient to be able to compute the value ∆.

Case of analytical differentiation. In some cases, we have explicit expressions – or efficient
algorithms – for the partial derivatives (2). In such cases, to compute ∆, we can first compute these
derivatives ci, and then apply the formula (3).

Numerical differentiation: idea. In many practical situations, we do not have algorithms for
computing the derivatives ci. This happens, e.g., when we use proprietary software in our computa-
tions – in this case, we cannot use neither formula for differentiation, nor automatical differentiation
tools.

In such situations, we can use the fact that we are under the linearization assumption that thus,
that for each i and hi 6= 0, we have

f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n) ≈ f(x̃1, . . . , x̃i−1, x̃i, x̃i+1, . . . , x̃n) + hi · ci. (5)

If we move the term ỹ = f(x̃1, . . . , x̃i, x̃i−1, x̃i+1, . . . , x̃n) to the left-hand side of the formula (5)
and divide both sides of the resulting approximate equality by hi, we conclude that

ci ≈
f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n)− ỹ

hi
. (6)

This is a known formula for numerical differentiation.
By using this formula, we get the following method for computing ∆.

Numerical differentiation: algorithm. We select some values hi 6= 0. Then, we compute the
values

ci =
f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n)− ỹ

hi
. (7)

Finally, we plug in these values into the formula (3) and get the desired estimate for ∆.

Numerical differentiation: computation time. The above algorithm contains n + 1 calls to
the original data processing algorithm f :
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− one call to compute ỹ and

− n calls to compute n partial derivatives c1, . . . , cn.

As we have mentioned earlier, the data processing algorithm f itself can be very time-consuming.
The same weather prediction example shows that the number n of input variables can also be
large, in hundreds or even thousands. As a result, the computation time needed for the numerical
differentiation method can be very large.
Need for a faster method: idea. Since the numerical differentiation method takes too long time,
it is desirable to come up with a faster method for computing ∆ and y.

Such a method is indeed known; see, e.g., (Kreinovich and Ferson, 2004). This method is based
on using Cauchy distribution, with the probability density function

ρ∆(x) =
∆

π
· 1

1 +
x2

∆2

. (8)

Specifically, there is a known result about this distribution: that

− when we have several independent random variables ∆xi distributed according to Cauchy
distribution with parameter ∆i,

− then their linear combination
n∑
i=1

ci ·∆xi is also Cauchy distributed, with parameter

∆ =

n∑
i=1

|ci| ·∆i.

This is exactly the desired formula (3). Thus, we can find ∆ as follows:

− first, we several times simulate the inputs ∆x
(k)
i according to the Cauchy distribution;

− then, we plug in the corresponding simulated values x
(k)
i = x̃i−∆x

(k)
i into the data processing

algorithm f(x1, . . . , xn), producing the values y(k) = f(x
(k)
1 , . . . , x

(k)
n );

− then, the differences ∆y(k) = ỹ−y(k) are also Cauchy distributed, with the desired parameter ∆.

The desired value ∆ can then be determined, e.g., by using the Maximum Likelihood method, i.e.,
from the condition that

L
def
=

N∏
k=1

ρ∆(∆y(k)) =
N∏
k=1

∆

π
· 1

1 +
(∆y(k))2

∆2

→ max (9)
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Maximizing the likelihood L is equivalent to minimizing its negative logarithm ψ
def
= − ln(L).

Differentiating L with respect to ∆ and equating the derivative to 0, we get the following formula:

N∑
k=1

1

1 +
(∆y(k))2

∆2

=
N

2
. (10)

To find ∆ from this equation, we can use, e.g., the bisection method. Thus, we arrive at the following
algorithm.

Monte-Carlo method for estimating the interval uncertainty: algorithm. We select the
number of iterations N . For each iteration k = 1, . . . , N , we do the following:

− First, we simulate ∆x
(k)
i based on Cauchy with parameter ∆i. We can do this, e.g., by com-

puting ∆
(k)
i = ∆i · tan(π · (rik − 0.5), where rik is the result of a standard random number

generator that generates the numbers uniformly distributed on the interval [0, 1].

− After that, we compute the difference

∆y(k) def
= ỹ − f(x̃1 −∆x

(k)
1 , . . . , xn −∆x(k)

n ). (11)

Now, we can find ∆ by using bisection to solve the equation (10). Specifically, we start with ∆ = 0
and ∆ = max

1≤k≤N
|∆y(k)|. For ∆ = ∆, the left-hand side of the formula (10) is smaller than N/2,

while for ∆ = ∆, this left-hand side is larger than N/2. Thus, if we want to get ∆ with the desired
accuracy ε, while ∆−∆ > ε, we do the following:

− we compute ∆mid =
∆ + ∆

2
;

− we check whether
N∑
k=1

1

1 +

(
∆y(k)

)2
∆2

mid

<
N

2
; (12)

− if this inequality is true, we replace ∆ with the new value ∆mid, leaving ∆ unchanged;

− if this inequality is not true, we replace ∆ with the new value ∆mid, leaving ∆ unchanged.

In both cases, on each iteration, the width of the interval
[

∆,∆
]

becomes twice smaller. Thus, in
s steps, we decrease this width by a factor of 2s. So, in a few steps, we get the desired value ∆. For
example, to get the width ≤ 0.1% of the original one, it is sufficient to perform only 10 iterations
of the bisection procedure.

Monte-Carlo method: computation time. In the Monte-Carlo approach, we need N + 1 calls
to the data processing algorithm f , where N is the number of simulations.

REC 2016 - A. Pownuk, O. Kosheleva and V. Kreinovich

274



Limitations of Realistic Monte-Carlo Techniques

Good news is that, as in statistical methods in general, the needed number of simulation N is
determined only by the desired accuracy ε and does not depend on the number of inputs n. For
example, to find ∆ with relative accuracy 20% and certainty 95% (i.e., in 95% of the cases), it is
sufficient to take n = 200 (Kreinovich and Ferson, 2004).

Thus, when the number of inputs n of the data processing algorithm f is large, the Monte-Carlo
method for estimating interval uncertainty is much faster than numerical differentiation.

3. Problem: The Existing Monte-Carlo Method is Not Realistic

Monte-Carlo method for the case of probabilistic uncertainty. To explain the problem with
the existing Monte-Carlo method for interval uncertainty, let us recall the Monte-Carlo method for
the case of probabilistic uncertainty.

This method is used when we know the probability distributions ρi(x|Deltaxi) for each ∆xi, and
we know that these random variables are independent. In this case, to find the desired distribution
for ∆y, we several times k = 1, . . . , N , do the following:

− we simulate n variables ∆x
(k)
i according to the corresponding probability distribution ρi(∆xi);

− then we simulate x
(k)
i = x̃i −∆x

(k)
i for each i;

− we apply the data processing algorithm f(x1, . . . , xn) to the simulated values, resulting in

y(k) = f(x
(k)
1 , . . . , x

(k)
n );

− finally, we compute ∆y(k) = ỹ − y(k).

One can easily check that these differences ∆y(k) have the same distribution as ∆y. So, we can
determine the desired probability distribution from the sample ∆y(1), . . . , ∆y(N).

Monte-Carlo method for the case of probabilistic uncertainty is realistic. The above
Monte-Carlo method is realistic in the following sense:

− we know that each measurement error ∆xi is distributed according to the probability
distribution ρi(∆xi), and

− this is exactly how we simulate the measurement errors: to simulate each value ∆
(k)
i , we use

the exact same distribution ρi(∆xi).

In contrast, the Monte-Carlo method for the case of interval uncertainty is not realistic.
In the case of uncertainty, all we know is that the measurement errors are always located within
the corresponding interval [−∆i,∆i]. We do not know how frequently measurement errors will
be observed in different parts of this interval. In other words, we do not know the probability
distribution of the measurement errors – we only know that this (unknown) probability distribution
is located on the interval [−∆i,∆i] with probability 1.
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With this in mind, a realistic Monte-Carlo simulation would mean that for simulating the values

∆
(k)
i , we select a probability distribution is located on the corresponding interval [−∆i,∆i] with

probability 1. Instead, the existing Monte-Carlo method for interval uncertainty uses Cauchy distri-
bution – and it is known that for this distribution, for any interval, there is a non-zero probability
to be outside this interval, and thus, the probability to be inside the interval [−∆i,∆i] is smaller
than 1.

A natural question. A natural question is:

− is this a limitation of the existing method, and an alternative realistic Monte-Carlo method is
possible for the case of interval uncertainty,

− or this is a limitation of the problem, and no realistic Monte-Carlo method is possible for
interval uncertainty.

What we do in this paper. In the two remaining sections, we prove that the non-realistic
character of the existing Monte-Carlo method for interval uncertainty is a limitation of the problem.
In other words, we prove that no realistic Monte-Carlo is possible for the case of interval uncertainty.

4. Proof That Realistic Interval Monte-Carlo Techniques Are Not Possible:
Case of Independent Variables

To prove the desired result, it is sufficient to consider a simple case. To prove the desired
impossibility result – that no realistic Monte-Carlo algorithm is possible that would always compute
the desired range y – it is sufficient to prove that we cannot get the correct estimate for one specific
function f(x1, . . . , xn).

As such a function, let us consider the simple function f(x1, . . . , xn) = x1 + . . . + xn. In this
case, all the partial derivatives are equal to 1, i.e., c1 = . . . = cn = 1 and thus,

∆y = ∆x1 + . . .+ ∆xn. (13)

If we assume that each variables ∆xi takes value from the interval [−δ, δ], then the range of
possible values of the sum is [−∆,∆], where ∆ = n · δ.

Analysis of the problem. Under Monte-Carlo simulations, we have

∆y(k) = ∆x
(k)
1 + . . .+ ∆x(k)

n . (14)

We assumed that the probability distributions corresponding to all i are independent.
Since the original problem is symmetric with respect to permutations, the corresponding distri-

bution is also symmetric, so all ∆
(k)
i are identically distributed. Thus, the value ∆y is the sum of

several (n) independent identically distributed random variables.
It is known that due to the Central Limit Theorem (see, e.g., (Sheskin, 2011)), when n increases,

the distribution of the sum tends to Gaussian. So, for large n, this distribution is close to Gaussian.
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The Gaussian distribution is uniquely determined by its mean µ and variance V = σ2. The mean
of the sum is equal to the sum of the means, so µ = n ·µ0, where µ0 is the mean of the distribution
used to simulate each ∆xi. For independent random variables, the variance of the sum is equal to
the sum of the variances, so V = n ·V0, where V0 is the variance of the distribution used to simulate
each ∆xi. Thus, σ =

√
V =

√
V0 ·
√
n.

It is well known that for a normal distribution, with very high confidence, all the values are
contained in a k-sigma interval [µ− k · σ, µ+ k · σ]:

− with probability ≈ 99.9%, the value will be in 3-sigma interval,

− with probability ≈ 1− 10−8, the value will be in the 6-sigma interval, etc.

Thus, with high confidence, all the values obtained from simulation are contained in the interval
[µ− k · σ, µ+ k · σ] of width 2k · σ = 2k ·

√
V0 ·
√
n.

For large n, this interval has the size const ·
√
n. On the other hand, we want the range [−∆,∆]

whose width is 2∆ = 2δ · n. So, when n is large, the simulated values occupy a part of the desired
interval that tends to 0:

2k ·
√
V0 ·
√
n

2δ · n
=

const√
n
→ 0. (15)

So, in the independence case, the impossibility is proven.

5. Proof That Realistic Interval Monte-Carlo Techniques Are Not Possible:
General Case

To prove the desired negative result, it is sufficient to consider a simple case. Similarly
to the previous section, to prove the impossibility result in the general case, it is also sufficient to
prove the impossibility for some of the functions.

In this proof, we will consider functions

f(x1, . . . , xn) = s1 · x1 + . . .+ sn · xn, (16)

where si ∈ {−1, 1}.
For each of these functions,

∆y = s1 ·∆x1 + . . .+ sn ·∆xn, (17)

so we have ci = si. Similarly to the previous section, we assume that each of the unknowns ∆xi
takes value from the interval [−δ, δ], for some known value δ > 0.

For each of these functions, |ci| = |si| = 1, so the desired range is the same for all these functions
and is equal to [−∆,∆], where

∆ =
n∑
i=1

|ci| ·∆i = n · δ. (18)
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Towards a precise formulation of the problem. Suppose that we want to find the range
[−∆,∆] with some relative accuracy ε. To get the range from simulations, we need to make sure
that some of the simulated results are ε-close to ∆, i.e., that∣∣∣∣∣

n∑
i=1

si ·∆x(k)
i − n · δ

∣∣∣∣∣ ≤ ε · n · δ, (19)

or, equivalently,

n · δ · (1− ε) ≤
n∑
i=1

si ·∆x(k)
i ≤ n · δ · (1 + ε). (20)

We are interested in realistic Monte-Carlo simulations, for which |∆(k)
i | ≤ δ for all i. Thus, we

always have
n∑
i=1

si ·∆x(k)
i ≤ n · δ < n · δ · (1 + ε). (21)

So, the right-hand inequality is always satisfied, and it is thus sufficient to make sure that we have

n∑
i=1

si ·∆x(k)
i ≥ n · δ · (1− ε) (22)

for some simulation k.
For this inequality to be true with some certainty, we need to make sure that the probability

of this inequality exceed some constant p > 0. Then, if we run 1/p simulations, then with high
probability, the inequality will be satisfied for at least one of these simulations. Thus, we arrive at
the following condition.

Definition. Let ε > 0, δ > 0, and p ∈ (0, 1). We say that a probability distribution on the set of
all vectors

(∆1 . . . ,∆xn) ∈ [−δ, δ]× . . .× [−δ, δ] (23)

is a (p, ε)-realistic Monte-Carlo estimation of interval uncertainty if for every set of values si ∈
{−1, 1}, we have

Prob(s1 ·∆x1 + . . .+ sn ·∆xn ≥ n · δ · (1− ε)) ≥ p. (24)

Main Result. Let δ > 0 and ε > 0. If for every n, we have a (pn, ε)-realistic Monte-Carlo
estimation of interval uncertainty, then pn ≤ β · n · cn for some β > 0 and c < 1..

Comments.

− As we have mentioned, when the probability is equal to p, we need 1/p simulations to get
the desired estimates. Due to the Main Result, to get a realistic Monte-Carlo estimate for the
interval uncertainty, we thus need

1

pn
∼ c−n

β · n
(25)
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simulations. For large n, we have
c−n

β · n
� n+ 1. (26)

Thus, the above results shows that realistic Monte-Carlo simulations require even more
computational time than numerical differentiation. This defeats the main purpose for using
Monte-Carlo techniques, which is – for our problem – to decrease the computation time.

− It is worth mentioning that if we allow pn to be exponentially decreasing, then a realistic Monte-
Carlo estimation of interval uncertainty is possible: e.g., we can take ∆xi to be independent
and equal to δ or to −δ with equal probability 0.5. In this case, with probability 2−n, we get
the values ∆xi = si · δ for which

n∑
i=1

si ·∆xi =

n∑
i=1

δ = n · δ > n · δ · (1− ε). (27)

Thus, for this probability distribution, for each combination of signs si, we have

Prob(s1 ·∆x1 + . . .+ sn ·∆xn ≥ n · δ · (1− ε)) = pn = 2−n. (28)

Proof of the main result. Let us pick some α ∈ (0, 1). Let us denote, by m, the number of
indices i or which si ·∆xi > α · δ. Then, if we have

s1 ·∆x1 + . . .+ sn ·∆xn ≥ n · δ · (1− ε), (29)

then for n−m indices, we have si ·∆xi ≤ α · δ and for the other m indices, we have si ·∆xi ≤ δ.
Thus,

n · δ · (1− ε) ≤
n∑
i=1

si ·∆xi ≤ m · δ + (n−m) · α · δ. (30)

Dividing both sides of this inequality by δ, we get

n · (1− ε) ≤ m+ (n−m) · α, (31)

hence n · (1− α− ε) ≤ m · (1− α) and thus,

m ≥ n · 1− α− ε
1− α

. (32)

So, we have at least

n · 1− α− ε
1− α

(33)

indices for which ∆xi has the same sign as si (and for which |∆xi| > α · δ). This means that for
the vector corresponding to a tuple (s1, . . . , sn), at most

n · ε

1− α− ε
(34)

indices have a different sign than si.
It is, in principle, possible that the same tuple (∆x1, . . . ,∆xn) can serve two different tuples

s = (s1, . . . , sn) and s′ = (s′1, . . . , s
′
n). However, in this case:
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− going from si to sign(∆xi) changes at most n · ε

1− α− ε
signs, and

− going from sign(∆xi) to s′i also changes at most n · ε

1− α− ε
signs.

Thus, between the tuples s and s′, at most 2 · ε

1− α− ε
signs are different. In other words, for the

Hamming distance

d(s, s′)
def
= #{i : si 6= s′i}, (35)

we have
d(s, s′) ≤ 2 · n · ε

1− α− ε
. (36)

Thus, if

d(s, s′) > 2 · n · ε

1− α− ε
, (37)

then no tuples (∆x1, . . . ,∆xn) can serve both sign tuples s and s′. In this case, the corresponding
sets of tuples for which

s1 ·∆x1 + . . .+ sn ·∆xn ≥ n · δ · (1− ε) (38)

and
s′1 ·∆x1 + . . .+ s′n ·∆xn ≥ n · δ · (1− ε) (39)

do not intersect. Hence, the probability that the randomly selected tuple belongs to one of these
sets is equal to the sum of the corresponding probabilities. Since each of the probabilities is greater
than or equal to p, the resulting probability is equal to 2p.

If we have M sign tuples s(1), . . . , s(M) for which

d(s(i), s(j)) > 2 · ε

1− α− ε
(40)

for all i 6= j, then similarly, the probability that the tuple (∆x1, . . . ,∆xn) serves one of these sign
tuples is greater than or equal to M · p. On the other hand, this probability is ≤ 1, so we conclude

that M · p ≤ 1 and p ≤ 1

M
.

So, to prove that pn is exponentially decreasing, it is sufficient to find the sign tuples whose
number M is exponentially increasing.

Let us denote β
def
=

ε

1− α− ε
. Then, for each sign tuple s, the number t of all sign tuples s′ for

which d(s, s′) ≤ β · n is equal to the sum of:

− the number of tuples

(
n

0

)
that differ from s in 0 places,

− the number of tuples

(
n

1

)
that differ from s in 1 place, . . . ,

− the number of tuples

(
n

β · n

)
that differ from s in β · n places,
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i.e.,

t =

(
n

0

)
+

(
n

1

)
+ . . .+

(
n

n · β

)
. (41)

When β < 0.5 and β ·n < n

2
, the number of combinations

(
n

k

)
increases with k, so t ≤ β ·n·

(
n

β · n

)
.

Here, (
a

b

)
=

a!

b! · (a− b)!
. (42)

Asymptotically,

n! ∼
(n
e

)n
, (43)

so

t ≤ β · n ·

(n
e

)n
(
β · n
e

)β·n
·
(

(1− β) · n
e

)(1−β)·n . (44)

One can see that the term nn in the numerator cancels with the term nβ·n · n(1−β)·n = nn in the
denominator. Similarly, the terms en and eβ·n · e(1−β)·n = en cancel each other, so we conclude that

t ≤ β · n ·
(

1

ββ · (1− β)1−β

)n
. (45)

Here,

γ
def
=

1

ββ · (1− β)1−β = exp(S), (46)

where

S
def
= −β · ln(β)− (1− β) · ln(1− β) (47)

is Shannon’s entropy. It is well known (and easy to check by differentiation) that its largest possible
values is attained when β = 0.5, in which case S = ln(2) and γ = exp(S) = 2. When β < 0.5, we
have S < ln(2), thus, γ < 2, and t ≤ β · n · γn for some γ < 2.

Let us now construct the desired collection of sign tuples s(1), . . . , s(M).

− We start with some sign tuple s(1), e.g., s(1) = (1, . . . , 1).

− Then, we dismiss t ≤ γn tuples which are ≤ β-close to s, and select one of the remaining tuples
as s(2).

− We then dismiss t ≤ γn tuples which are ≤ β-close to s(2). Among the remaining tuples, we
select the tuple s(3), etc.

Once we have selected M tuples, we have thus dismissed t ·M ≤ β · n · γn ·M sign tuples. So, as
long as this number is smaller than the overall number 2n of sign tuples, we can continue selecting.
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This procedure ends when we have selected M tuples for which β · n · γn ·M ≥ 2n. Thus, we
have selected

M ≥
(

2

γ

)n
· 1

β · n
(48)

tuples. So, we have indeed selected exponentially many tuples.
Hence,

pn ≤
1

M
≤ β · n ·

(γ
2

)n
, (49)

i.e.,
pn ≤ β · n · cn, (50)

where
c

def
=

γ

2
< 1. (51)

So, the probability pn is indeed exponentially decreasing. The main result is proven.
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Appendix

A. Why Cauchy Distribution

Formulation of the problem. We want to find a family of probability distributions with the
following property:

− when we have several independent variables X1, . . . , Xn distributed according to a distribution
with this family with parameters ∆1, . . . ,∆n,

− then each linear combination Y = c1 ·X1 + . . . + cn ·Xn has the same distribution as ∆ ·X,

where X corresponds to parameter 1, and ∆ =
n∑
i=1
|ci| ·∆i.

In particular, for the case when ∆1 = . . . = ∆n = 1, the problem becomes even easier to describe,
since then, we only need to find one probability distribution: corresponding to the value 1. In this
case, the desired property of this probability distribution is as follows:

− if we have n independent identically distributed random variables X1, . . . , Xn,

− then each linear combination Y = c1 ·X1 + . . .+ cn ·Xn has the same distribution as ∆ ·Xi,

where ∆ =
n∑
i=1
|ci|.

Let us describe all probability distributions that satisfy this property.

Analysis of the problem. First, we observe that from the above condition, for n = 1 and c1 = −1,
we conclude that −X and X should have exactly the same probability distribution, i.e., that the
desired probability distribution be symmetric with respect to 0 (even).

A usual way to describe a probability distribution is to use a probability density function
ρ(x), but often, it is more convenient to use its Fourier transform, i.e., in probabilistic terms,

the characteristic function χX(ω)
def
= E[exp(i · ω · X)], where E[.] indicates the expected value of

the corresponding quantity and i
def
=
√
−1.

The advantage of using a characteristic function is that for the sum S = X1 + X2 of two
independent variables X1 +X2, we have

χS(ω) = E[exp(i · ω · S)] = E[exp(i · ω · (X1 +X2)] = E[exp(i · ω ·X1 + i · ω ·X2)] =

E[exp(i · ω ·X1) · exp(i · ω ·X2)]. (51)

Since X1 and X2 are independent, the variables exp(i·ω ·X1) and exp(i·ω ·X2) are also independent,
and thus,

χS(ω) = E[exp(i ·ω ·X1) ·exp(i ·ω ·X2)] = E[exp(i ·ω ·X1)] ·E[exp(i ·ω ·X2)] = χX1(ω) ·χX2(ω). (52)

Similarly, for a linear combination Y =
n∑
i=1

ci ·Xi, we have
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χY (ω) = E[exp(i · ω · Y )] = E

[
exp

(
i · ω ·

n∑
i=1

ci ·Xi

)]
= E

[
exp

(
n∑
i=1

i · ω · ci ·Xi

)]
=

E

[
n∏
i=1

exp (i · ω · ci ·Xi)

]
=

n∏
i=1

E[exp(i · (ω · ci) ·Xi] =

n∏
i=1

χX(ω · ci). (53)

The desired property is that the linear combination Y should have the same distribution as ∆ ·X.
Thus, the characteristic function χY (ω) should be equal to the characteristic function of ∆ ·X, i.e.,
to

χ∆·X(ω) = E[exp(i · ω · (∆ ·X))] = E[exp(i · (ω ·∆) ·X)] = χX(ω ·∆). (54)

By comparing expressions (53) and (54), we conclude that for all possible combinations c1, . . . , cn,
the desired characteristic function χX(ω) should satisfy the equality

χX(c1 · ω) · . . . · χX(cn · ω) = χX((|c1|+ . . .+ |cn|) · ω). (55)

In particular, for n = 1, c1 = −1, we get χX(−ω) = χX(ω), so χX(ω) should be an even function.
For n = 2, c1 > 0, c2 > 0, and ω = 1, we get

χX(c1 + c2) = χX(c1) · χX(c2). (56)

The characteristic function should be measurable, and it is known that the only measurable function
with the property (56) has the form χX(ω) = exp(−k ·ω) for some k; see, e.g., (Aczél, 2006). Due to
evenness, for a general ω, we get χX(ω) = exp(−k · |ω|). By applying the inverse Fourier transform,
we conclude that X is Cauchy distributed.

Conclusion. The only distribution for which the independent-case Monte Carlo simulations lead
to correct estimate of the interval uncertainty is the Cauchy distribution.
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